

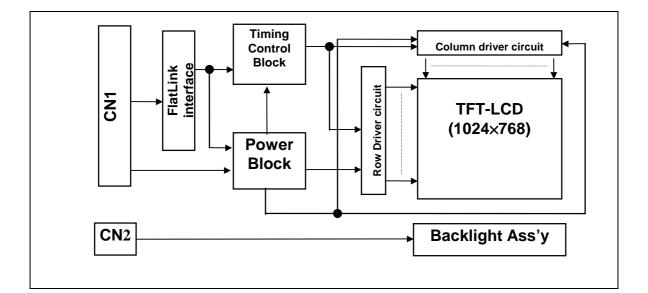
SPECIFICATIONS

TITLE: LP141X6-A1IB REV. 1 PAGE 1 OF 22

DATA DISPLAY AG

LP141X6-A1IB 14.1" XGA TFT LCD

PRELIMINARY SPECIFICATION



LP141X6-A1IB LIQUID CRYSTAL DISPLAY

TITLE: LP141X6-A1IB REV. 1 PAGE 2 OF 22

1. GENERAL DESCRIPTION

The LP141X6-A1IB is a Color Active Matrix Liquid Crystal Display with an integral Cold Cathode Fluorescent Lamp(CCFL) back light system. The matrix employs a-Si Thin Film Transistor as the active element. It is a transmissive type display operating in the normally white mode. This TFT-LCD has a 14.1 inch diagonally measured active display area with XGA resolution(768 vertical by 1024 horizontal pixel array). Each pixel is divided into Red, Green and Blue sub-pixels or dots which are arranged in vertical stripes. Gray scale or the brightness of the sub-pixel color is determined with a 6-bit gray scale signal for each dot, thus, presenting a palette of more than 262,144 colors. The LP141X6-A1IB has been designed to apply the interface method that enables low power, high speed low EMI. Flat Link must be used as a LVDS(Low Voltage Differential Signaling) chip. The LP141X6-A1IB is intended to support applications where thin thickness, low power are critical factors and graphic displays are important. In combination with the vertical arrangement of the sub-pixels, the LP141X6-A1IB characteristics provide an excellent flat panel display for office automation products such as mobile industrial computers.

General Features

Active screen size 14.1 inches (33.78 cm) diagonal **Outline dimensions** 298.5 (H) × 227.5 (V) × 5.7 (D) mm (typ) Pixel pitch 0.279 mm × 0.279 mm Pixel format 1024 horiz. By 768 vert. Pixel RGB stripe arrangement Color depth 6-bit, 262,144 colors $150 \text{ cd/m}^2 (\text{typ})$ Luminance, White **Power Consumption** Total 4.54 Watt (typ) Weight 500g (typ) Display operating mode transmissive mode, normally white Surface treatments hard coating(3H), anti-glare treatment of the front polarizer

TITLE: LP141X6-A1IB REV. 1 PAGE 3 OF 22

2. ABSOLUTE MAXIMUM RATINGS

The following are maximum values which, if exceeded, may cause faulty operation or damage to the unit.

Table 1 ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Val	ues	Units	Notes	
Farameter	Min. Max.			Units	NOLES	
Power Input Voltage Operating Temperature Storage Temperature	V _{CC} T _{OP} T _{ST}	-0.3 0 -20	+3.6 +50 +60	Vdc °C °C	at 25° 1,2 1,2	

Note 1: Temperature at 5 mm above display center of LCD Module. Ta \leq 40°C: 90 % RH max Ta > 40°C: Absolute Humidity shall be less than Ta = 40° 90 % RH. These shall be no dew condensation.

Note 2: Humidity Min. 5% RH, Max. 90% RH

3. ELECTRICAL SPECIFICATIONS

3.1 Electrical Characteristics

The LP141X6-A1IB requires two power inputs. One is employed to power the LCD electronics and to drive the TFT array and liquid crystal. The second input which powers the CCFL, is typically generated by an inverter. The inverter is an external unit to the LCD.

Parameter	Symbol		Units	Notes		
	-	Min.	Тур.	Max.		
MODULE: Power Supply Input Voltage Power Supply Input Current Differential Impedance Power Consumption Rush current	V _{CC} I _{CC} Zm I _{RUSH}	3.0 90 -	3.3 0.275 100 0.91 1.0	3.6 0.315 110 1.04 1.5	Vdc A ohm Watts A	1 2 1 3
LAMP Operating Voltage Operating Current Established Starting Voltage	V _{BL} I _{BL}	680 3.0	725 5.0	850 6.0	V _{RMS} mA	4 5
at 25°C at 0°C Operating Frequency Power Consumption Half Life Time	f _{BL} P _{BL}	- 40 - 10,000	- 60 3.63 15,000	1170 1450 80 4.08 -	V _{RMS} V _{RMS} kHz Watts Hrs	6 7

Table 2 ELECTRICAL CHARACTERISTICS

Notes 1: The specified current and power consumption are under the Vcc = 3.3V, $25^{\circ}C$, fv = 60 Hz condition whereas Black pattern is displayed.

LP141X6-A1IB LIQUID CRYSTAL DISPLAY

TITLE: LP141X6-A1IB REV. 1 PAGE 4 OF 22

- Notes 2: This impedance value is needed to proper display and measured form LVDS Tx to the mating connector.
- Notes 3: The duration of rush current is about 20 ms.
- Notes 4: The variance of the voltage is \pm 10 %.
- Notes 5: The transformer output voltage in the inverter must be high considering to the loss of the ballast capacitor in the inverter.
- Notes 6: The lamp power consumption shown above does not include loss of external inverter.
- Notes 7: The life time is determined as the time at which brightness of lamp is 50 % compare to that of initial value at the typical lamp current

TITLE: LP141X6-A1IB REV. 1 PAGE 5 OF 22

3.2 Interface Connections

This LCD employs two interface connections, a 20 pin connector is used for the module electronics and the other connector is used for the integral backlight system. The electronics interface connector is a model FI-SEB-20P-HF manufactured by JAE or equivalent. The pin configuration for the connector is shown in the table below.

Pin	Symbol	Description	Notes
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	VCC GND GND AOP GNM AOP GND AO GND AO AO AO AO AO AO AO AO AO AO AO AO AO	Power (3.3V) Power (3.3V) Ground Difference Signal Difference Signal Difference Signal Difference Signal Difference Signal Difference Signal Difference Signal Difference Signal Difference Signal Difference Signal Ground No Connection No Connection Ground Ground	1. Interface chips 1.1 LCD: KZ4E038C12CFP (Thine) (THC63LVDF64A core + Timing Controller) 1.2 System: THC63LVDM63A (Thine) * Pin to pin compatible with TI LVDS 2. Connector 2.1 LCD: GT122-20P-R (LG CABLE) 2.2 Mating: FI-WEB21P-HF (JAE) 2.3 Connector pin arrangement No. 1-20 CN1 Viewing on Display side CN2

The backlight interface connector is a model BHSR-02VS-1, manufactured by JST. The mating connector part number is SM02B-BHSS-1 or equivalent. The pin configuration for the connector is shown in the table below.

Table 4 BACKLIGHT CONNECTOR PIN CONFIGURATION [CN2]

Pin	Symbol	Description	Notes
1	HV	High voltage input	1
2	LV	Low voltage input	2

Notes 1: The high voltage input terminal is colored white.

Notes 2: The low voltage input terminal is colored black.

LP141X6-A1IB LIQUID CRYSTAL DISPLAY

TITLE: LP141X6-A1IB REV. 1 PAGE 6 OF 22

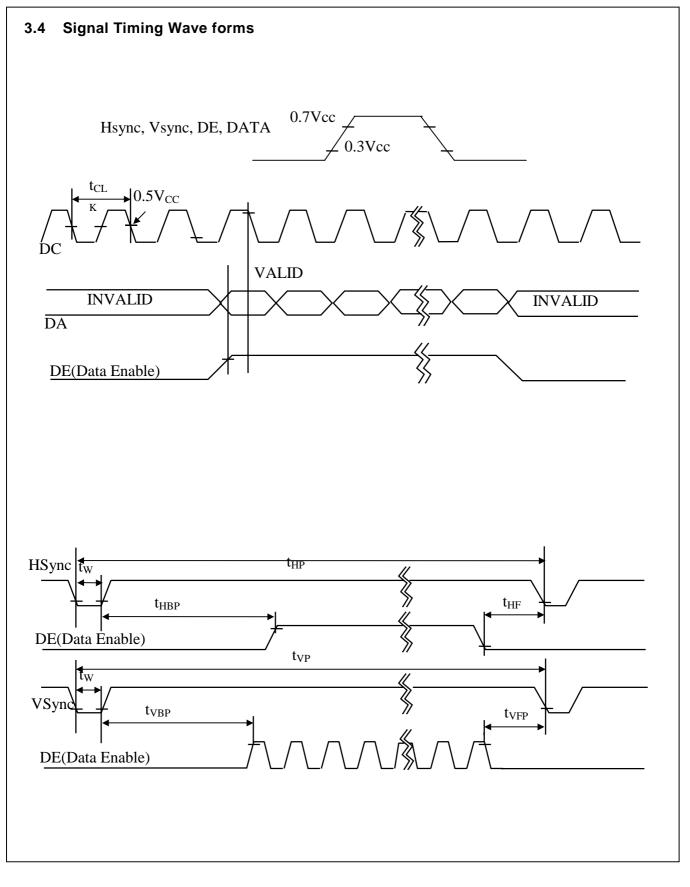
Table 5 REQUIRED SIGNAL ASSIGNMENT FOR FLATLINK TRANSMITTER Pin Name **Require Signals** Pin # Pin # Pin Name **Require Signals** 1 D4 R4 48 D3 R3 2 47 R2 Vcc Vcc D2 R5 GND GND 3 D5 46 4 D6 G0 45 D1 R1 5 GND GND 44 D0 R0 G1 6 D7 43 NC NC 7 D8 G2 42 LVDS GND LVDS GND 8 Y0M Vcc Vcc 41 A0M 9 D9 G3 40 Y0P A0P 10 D10 G4 39 Y1M A1M 11 GND GND 38 Y1P A1P 12 D11 G5 37 LVDS Vcc LVDS Vcc 13 D12 B0 36 LVDS GND LVDS GND NC 14 NC 35 Y2M A2M Y2P A2P 15 D13 B1 34 16 D14 B2 33 CLKOUTM CLKM CLKP GND GND 32 CLKOUTP 17 D15 B3 LVDS GND LVDS GND 18 31 PLLGND PLL GND 19 D16 Β4 30 D17 20 B5 29 PLLVcc PLL Vcc 21 Vcc 28 PLLGND PLL GND Vcc 22 D18 HSYNC SHDN SHDN 27 D19 VSYNC 23 26 CLKIN Dclk 24 GND GND 25 D20 DE (Data Enable)

Notes: Refer to LVDS Transmitter Data Sheet for detail descriptions.

TITLE: LP141X6-A1IB REV. 1 PAGE 7 OF 22

3.3 Signal Timing Specifications

This is the signal timing required at the input of the LVDS Transmitter. All of the interface signal timing should be satisfied with the following specifications for it's proper operation.


Table 6 Timing Table

	ITEM	SYMBOL	MIN.	TYP.	MAX.	UNIT	NOTE
Dclk	Period	t _{CLK}	14.7	15.4	16.1	ns	65MHz(Typ)
Hsync	Period	t _{HP}	1206	1344	1364	t _{CLK}	
	Width-Active	t _{wH}	16	136	240		
Vsync	Period	t _{VP}	780	806	830	t _{HP}	
	Frequency	f _V	-	60	-	Hz	
	Width-Active	t _{wv}	1	6	24	t _{HP}	
DE	Horizontal	t _{HBP}	10	160	-		
	Back Porch					t _{CLK}	
(Data	Horizontal	t _{HFP}	10	24	-		
	Front Porch						
Enable)	Vertical	t _{vBP}	2	29	-		
	Back Porch	-001		-		t _{HP}	
	Vertical	t _{VFP}	1	3	-		
	Front Porch						

LP141X6-A1IB LIQUID CRYSTAL DISPLAY

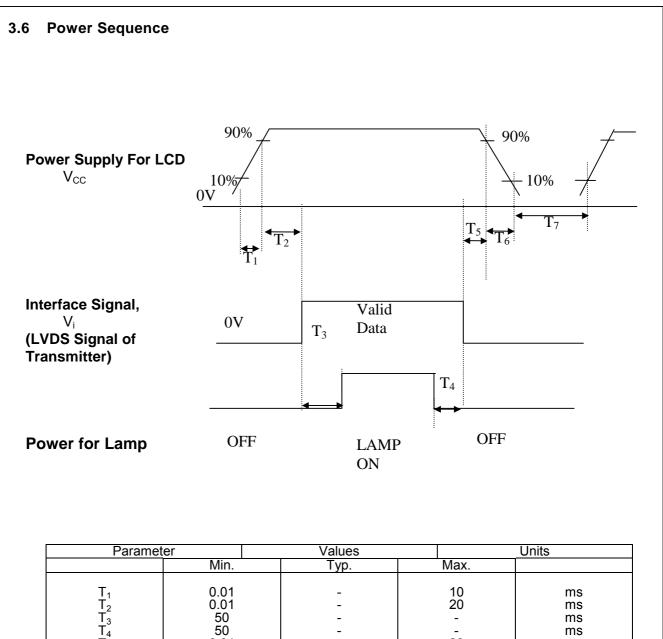
TITLE: LP141X6-A1IB REV. 1 PAGE 8 OF 22

TITLE: LP141X6-A1IB REV. 1 PAGE 9 OF 22

3.5 Color Input Data Reference

The brightness of each primary color (red, green and blue) is based on the 6-bit gray scale data input for the color; the higher the binary input, the brighter the color. The table below provides a reference for color versus data input.

Table 7 COLOR DATA REFERENCE


		Input Color Data																	
	Color Red						Green						Blue						
		MSB LSB				MSB LSB					MSB LSB								
		R5	R4	R3	R2	R1	R0	G5	G4	G3	G2	G1	G0	B5	B4	B3	B2	B1	B0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(63)	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Green(63)	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
Basic	Blue(63)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1
Colors	Cyan	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	0	0	0	0	0	0	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red(00) Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(01)	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
	Red(02)	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
Red		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
	Red(61)	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0
	Red(62)	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(63) Bright	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Green(00)Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(01)	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
	Green(02)	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
Green		:	:	:	:	:	:	:	:	:		:	:	:	:	:	:	:	:
	Green(61)	0	0	0	0	0	0	1	1	1	1	0	1	0	0	0	0	0	0
	Green(62)	0	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0	0
	Green(63)	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
	Bright																		
	Blue(00) Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue(01)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	Blue(02)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Blue		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
	Blue(61)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	0	1
	Blue(62)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	0
	Blue(63) Bright	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1

LP141X6-A1IB LIQUID CRYSTAL DISPLAY

 T_5

Τ₆ Τ₇ TITLE: LP141X6-A1IB REV. 1 PAGE 10 OF 22

Notes 1: Please avoid floating state of interface signal at invalid period.

0.01

0.01

1

Notes 2: When the interface signal is invalid, be sure to pull down the power supply for LCD V_{CC} to 0V.

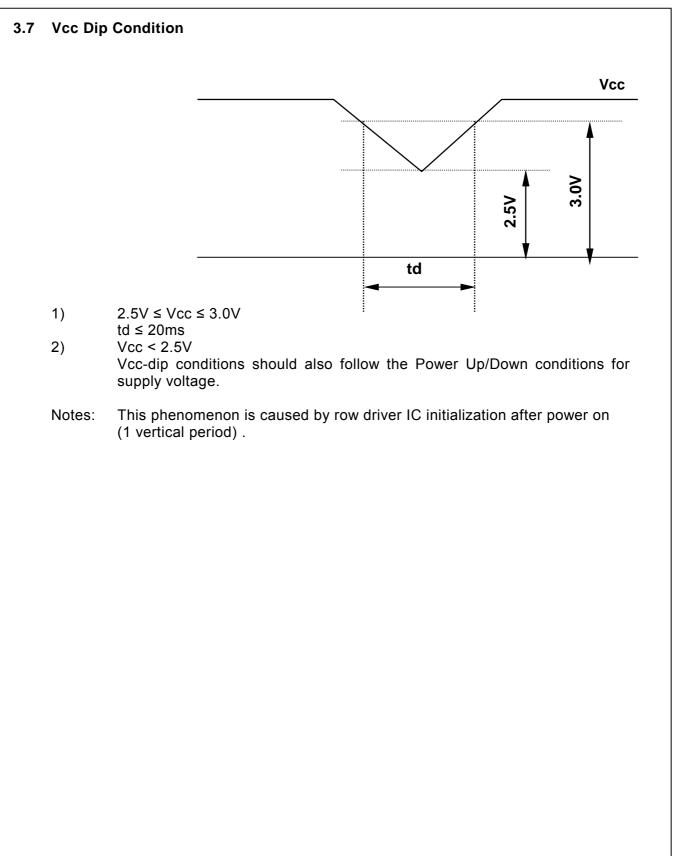
_

20

20

ms

ms


s

Notes 3: Lamp power must be turn on after power supply for LCD and interface signal are valid.

LP141X6-A1IB LIQUID CRYSTAL DISPLAY

TITLE: LP141X6-A1IB REV. 1 PAGE 11 OF 22

TITLE: LP141X6-A1IB REV. 1 PAGE 12 OF 22

4. OPTICAL SPECIFICATIONS

Optical characteristics are determined after the unit has been 'ON' and stable for approximately 30 minutes in a dark environment at 25°C. The values specified are at an approximate distance 50cm from the LCD surface at a viewing angle of Φ and θ equal to 0°.

Appendix A -1 presents additional information concerning the measurement equipment and method.

(Ta=25°C, Vcc=3.3 V, f_V =60 Hz, Dclk=65 MHz, I_{Pl} =6.0 mA)

Parameter	Symbol		Values	Units	Notes	
	,	Min.	Тур.	Max.		
Contrast Ratio	CR	150	250	-		1
Surface Luminance, white	L_{WH}	-	150	-	cd/m ²	2
Luminance Variation	δ₩ΗΙΤΕ	-	1.25	1.45		3
Response Time Rise Time Delay Time	Tr Tr _R Tr _D		20 30	40 50	msec	4
CIE Color Coordinates Red Green Blue White	Х _R У _G У _G У _B У _B Уw Уw		TBD TBD TBD TBD TBD TBD TBD TBD			
Viewing Angle x axis, right (Φ=0°) x axis, left (Φ=180°) y axis, up (Φ=90°) y axis, down (Φ=270°)	θxr θxl θyu θyd	40 40 10 30	- - - -	- - - -	degree	5
Gray Scale		-	-	-		6

Notes 1: Contrast Ratio (CR) is defined mathematically as :

Contrast Ratio =

Surface Luminance with all white pixels

Surface Luminance with all black pixels

- Notes 2: Surface luminance is the center point across the LCD surface 50cm from the surface with all pixels displaying white. For more information see Appendix A 2.
- Notes 3: The variation in surface Luminance, WHITE is determined by measuring L_{ON} at each test position 1 through 9, and then dividing the maximum L_{ON} of 9 points luminance by minimum L_{ON} of 9 points luminance. For more information see Appendix A 2.

WHITE Maximum (L_{ON1} , L_{ON2} , ... L_{ON9}) ÷ Minimum (L_{ON1} , L_{ON2} ,... L_{ON9})

Notes 4: Response time is the time required for the display to transition from white to black (Rise Time, Tr_R) and from black to white (Delay Time, Tr_D). For additional information see Appendix A - 3.

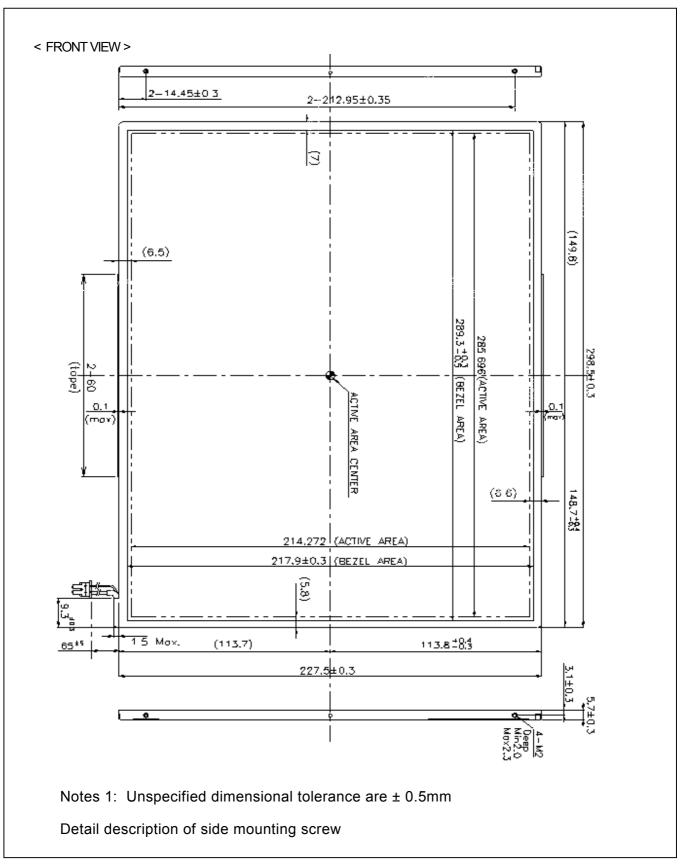
LP141X6-A1IB LIQUID CRYSTAL DISPLAY

TITLE: LP141X6-A1IB REV. 1 PAGE 13 OF 22

- Notes 5: Viewing angle is the angle at which the contrast ratio is greater than 10. The angles are determined for the horizontal or x axis and the vertical or y axis with respect to the z axis which is normal to the LCD surface. For more information see Appendix A - 4
- Notes 6: Gray scale specification.

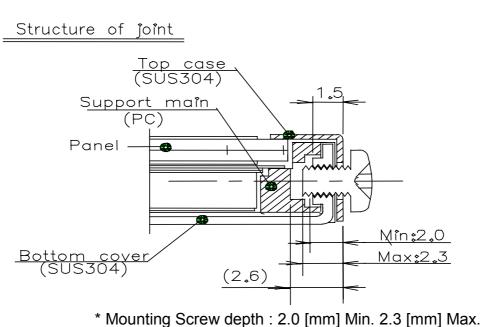
	Luminance(%)
Gray Level	(typ)
LO	0.4
L7	1.8
L15	4.6
L23	10.0
L31	21.0
L39	37.0
L47	59.5
L55	82.0
L63	100

5. MECHANICAL CHARACTERISTICS


The contents provide general mechanical characteristics for the model LP141X6-A1IB LCD. In addition, the figures in the next page are detailed mechanical drawings of the LCD.

Outside dimer	nsions:	
	Horizontal	298.5 + 0.3, -0.3 mm
	Vertical	227.5 + 0.3, -0.3 mm
	Depth	5.7 ± 0.3 mm
Bezel area:		
	Horizontal	289.3 + 0.3, -0.5 mm
	Vertical	217.9 + 0.3, -0.3 mm
Active Display	area:	
	Horizontal	285.7 mm
	Vertical	214.3 mm
Weight (appro	oximate)	500 g (typ), 510 g (max)
Surface Treat	ment:	Hard coating 3 H. Anti-glare treatment of the front polarizer

LP141X6-A1IB LIQUID CRYSTAL DISPLAY


TITLE: LP141X6-A1IB REV. 1 PAGE 14 OF 22

LP141X6-A1IB LIQUID CRYSTAL DISPLAY

TITLE: LP141X6-A1IB REV. 1 PAGE 15 OF 22

* Torque : 1.3 ~ 1.5 [kgf cm]

Notes 1: Mounting Screw depth: Min. 2.0 [mm], Max. 2.3 [mm] Notes 2: Torque: 2.8 ± 0.3 [kgf·cm]

TITLE: LP141X6-A1IB REV. 1 PAGE 16 OF 22

6. RELIABILITY

Environment test condition

No.	Test Item	Conditions
1	High temperature storage test	Ta = 60°C 240 h
2	Low temperature storage test	Ta = -20°C 240 h
3	High temperature operation test	Ta = 50°C 50% RH 240 h
4	Low temperature operation test	Ta = 0° 240 h
5	Vibration test (non-operating)	Sine wave, 10 ~ 500 ~ 10 Hz, 1.5 G, 0.37 oct/min, 3 axis, 1 hour/axis
6	Shock test (non-operating)	Half sine wave, 110 G, 6 ms, one shock of each six faces (i.e. run 110G 6 ms for all six faces.) Square wave, 50 G, 18 ms (for packing)
7	Altitude	
	operating	0 - 10,000 feet (3048 m)
	storage/shipment	0 - 40,000 feet (12192 m)

Result Evaluation Criteria

There should be no change which might affect the practical display function when the display quality test is conducted under normal operating condition.

- ON/OFF Cycle: The display module will be capable of being operated over 24,000 ON/OFF cycles (Lamp power & Vcc ON/OFF)
- Mean Time Between Failure: The LCD Panel and interface board assembly (excluding the CCFTs) have a mean time between failures of 30,000 hours with a confidence level 90%.

TITLE: LP141X6-A1IB REV. 1 PAGE 17 OF 22

7. INTERNATIONAL STANDARDS

7.1 Safety

- a) UL 1950 Third Edition, Underwriters Laboratories, Inc. Jan. 28, 1995. Standard for Safety of Information Technology Equipment Including Electrical Business Equipment.
- b) CAN/CSA C22.2 No. 950-95 Third Edition, Canadian Standards Association, Jan. 28, 1995. Standard for Safety of Information Technology Equipment Including Electrical Business Equipment.
- c) EN 60950 : 1992 + A1 : 1993 + A2 : 1993 + A3 : 1995 + A4 : 1997 + A11 : 1997 IEC 950 : 1991 + A1 : 1992 + A2 : 1993 + A3 : 1995 + A4 : 1996 European Committee for Electrotechnical Standardization (CENELEC) EUROPEAN STANDARD for Safety of Information Technology Equipment Including Electrical Business Equipment.

7.2 EMC

- a) ANSI C63.4 "Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9kHz to 40GHz." American National Standards Institute(ANSI),1992.
- b) C.I.S.P.R "Limits and Methods of Measurement of Radio Interference Characteristics of Information Technology Equipment." International Special Committee on Radio Interference
- c) EN 55022 "Limits and Methods of Measurement of Radio Interference Characteristics of Information Technology Equipment." European Committee for Electrotechnical Standardization (CENELEC),1988

LP141X6-A1IB LIQUID CRYSTAL DISPLAY

TITLE: LP141X6-A1IB REV. 1 PAGE 18 OF 22

8. PACKING

8.1 Designation of Lot Mark

a) Lot Mark

A, B, C: INCH CODE D: YEAR E: MONTH F,G: PANEL FACTORY H: MODULE LINE I, J, K, L, M: SERIAL NO

Note 1: YEAR(D)

YEAR	99	00	01	02	03	04	05	06	07	08	09
Mark	9	0	1	2	3	4	5	6	7	8	9

Note 2: MONTH(E)

MONTH	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Mark	1	2	3	4	5	6	7	8	9	0	А	В

Note 3: MODULE LINE(H)

LINE	1	2	3	4	5	6	7	8	9	10	11	12	13
Mark	1	2	3	4	5	6	7	8	9	А	В	С	D

b) Location of Lot Mark

Serial No. is printed on the label. The label is attached to the backside of the LCD module.

This is subject to change without prior notice.

TITLE: LP141X6-A1IB REV. 1 PAGE 19 OF 22

8.2 Packing Form

- a) Package quantity in one box: 10 PCS
- b) Box Size: 374mm X 329mm X 311mm

9. PRECAUTIONS

Please pay attention to the followings when you use this TFT LCD module.

9.1 MOUNTING PRECAUTIONS

- (1) You must mount a module using holes arranged in four corners or four sides.
- (2) You should consider the mounting structure so that uneven force (ex. Twisted stress) is not applied to the module. And the case on which a module is mounted should have sufficient strength so that external force is not transmitted directly to the module.
- (3) Please attach a transparent protective plate to the surface in order to protect the polarizer.

Transparent protective plate should have sufficient strength in order to resist external force.

- (4) You should adopt radiation structure to satisfy the temperature specification.
- (5) Acetic acid type and chlorine type materials for the cover case are not desirable because the former generates corrosive gas of attacking the polalizer at high temperature and the latter causes circuit break by electro-chemical reaction.
- (6) Do not touch, push or rub the exposed polarizers with glass, tweezers or anything harder than HBb pencil lead. And Please do not rub with dust clothes with chemical treatment.

Do not touch the surface of polarizer for bare hand or greasy cloth. (Some cosmetics are detrimental to the polarizer.)

- (7) When the surface becomes dusty, please wipe gently with absorbent cotton or other soft materials like chamois soaked with petrolium benzene. Normalhexane is recommended for cleaning the adhesives used to attach front / rear polarizers. Do not use acetone, toluen and alcohol because they cause chemical damage to the polarizer.
- (8) Wipe off saliva or water drops as soon as possible. Their long time contact with polarizer causes deformations and color fading.
- (9) Do not open the case because inside circuits do not have sufficient strength.

9.2 OPERATING PRECAUTIONS

- (1) The spike noise causes the mis-operation of circuits. It should be lower than following voltage: $V = \pm 200 \text{mV}$ (Over and under shoot voltage).
- (2) Response time depends on the temperature. (In lower temperature, it becomes longer.)
- (3) Brightness depends on the temperature. (In lower temperature, it becomes lower.)

LP141X6-A1IB LIQUID CRYSTAL DISPLAY

TITLE: LP141X6-A1IB REV. 1 PAGE 20 OF 22

And in lower temperature, response time (required time that brightness is stable after turned on) becomes longer.

- (4) Be careful for condensation at sudden temperature change. Condensation makes damage to polarizer or electrical contacted parts. And after fading condensation, smear or spot will occur.
- (5) When fixed patterns are displayed for a long time, remnant image is likely to occur.
- (6) A module has high frequency circuit. If you need to shield the electromagnetic noise, please do in yours. When a Back-light unit is operating, it sounds. If you need to shield the noise, please do in yours.

9.3 ELECTROSTATIC DISCHARGE CONTROL

Since a module is composed of electronic circuits, it is not strong to electrostatic discharge. Make certain that treatment persons are connected to ground through wrist band etc. And don't touch interface pin directly.

9.4 PRECAUTIONS FOR STRONG LIGHT EXPOSURE

Strong light exposure causes degradation of polarizer and color filter.

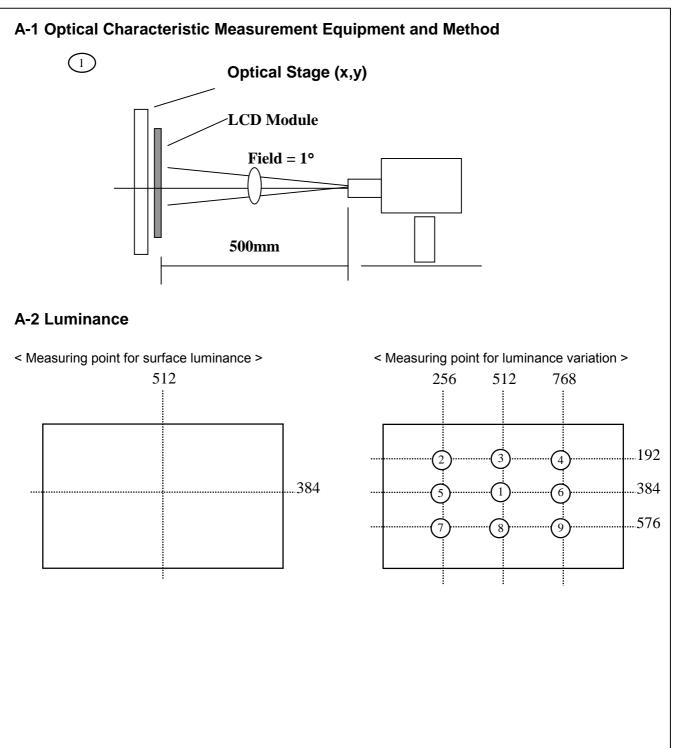
9.5 STORAGE

When storing modules as spares for a long time, the following precautions are necessary.

- (1) Store them in a dark place. Do not expose the module to sunlight or fluorescent light. Keep the temperature between 5° and 35° at normal humidity.
- (2) The polarizer surface should not come in contact with any other object. It is recommended that they be stored in the container in which they were shipped.

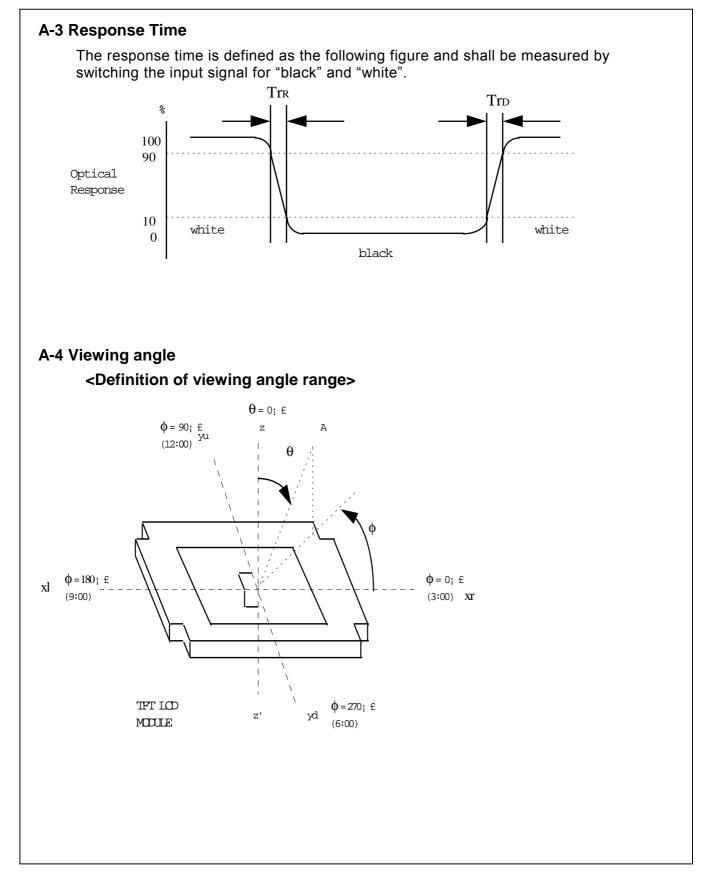
9.6 HANDLING PRECAUTIONS FOR PROTECTION FILM

 (1) When the protection film is peeled off, static electricity is generated between the film and polarizer.
This should be peeled off slowly and carefully by people who are electrically


This should be peeled off slowly and carefully by people who are electrically grounded and with well ion- blown equipment or in such a condition, etc..

- (2) The protection film is attached to the polarizer with a small amount of glue. If some stress is applied to rub the protection film against the polarizer during the time you peel off the film, the glue is apt to remain on the polarizer. Please carefully peel off the protection film without rubbing it against the
 - polarizer.
- (3) When the module with protection film attached is stored for a long time, sometimes there remains a very small amount of glue still on the polarizer after the protection film is peeled off.
- (4) You can remove the glue easily. When the glue remains on the polarizer surface or its vestige is recognized, please wipe them off with absorbent cotton waste or other soft material like chamois soaked with normal-hexane.

LP141X6-A1IB LIQUID CRYSTAL DISPLAY


TITLE: LP141X6-A1IB REV. 1 PAGE 21 OF 22

LP141X6-A1IB LIQUID CRYSTAL DISPLAY

TITLE: LP141X6-A1IB REV. 1 PAGE 22 OF 22

