			First Edition	Approved by	Production Div.
			Apr 26, 1999		0 11 1 0
	CD Module Sp	ecification	Final Revision	Checked by	Quality Assurance Div.
)	******	Checked by D	Design Engineering Div.

Type No.	DMF - 5077	73NF-SLY		Prepared by	Production Div.
		Table	of Contents		
	1. General S	Specifications		2	2
		-			
	6. Appearan	ce Standards		12	2
	•		_ot		
			Handling		
	11. Warranty.			17	7
		Revis	sion History		
Rev.	Date	Page		Comment	
DN	IF-50773NF-SLY (AB)	No.99-0082		ORPORATION	Page 1/17

1. General Specifications

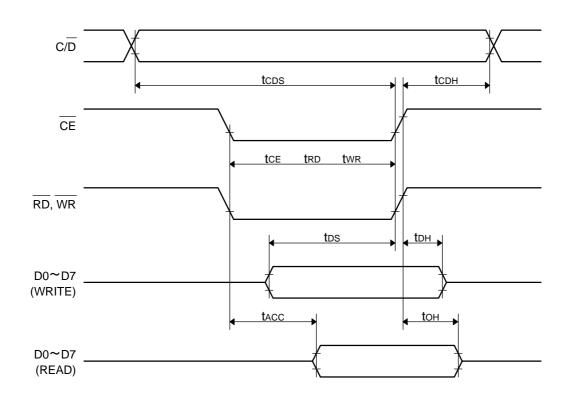
Operating Temp.	:	min. 0°C \sim max. 50°C
Storage Temp.	:	min20°C \sim max. 60°C
Dot Pixels	:	240 (W) \times 128 (H) dots
Dot Size	:	0.47 (W) \times 0.47 (H) mm
Dot Pitch	:	0.50 (W) \times 0.50 (H) mm
Viewing Area	:	126.0 (W) \times 70.0 (H) mm
Outline Dimensions	:	170.0 (W) \times 95.0 (H) \times 16.7 max. (D) mm
Weight	:	250g max.
LCD Type	:	NSD-15524 (F-STN / Black & White - mode / Transflective)
Viewing Angle	:	6:00
Control LSI	:	T6963C-0101 (Produced by TOSHIBA)
Data Transfer	:	8-bit parallel data transfer
Backlight	:	LED Backlight / Yellow-green
Drawings	:	Dimensional Outline UE-36772

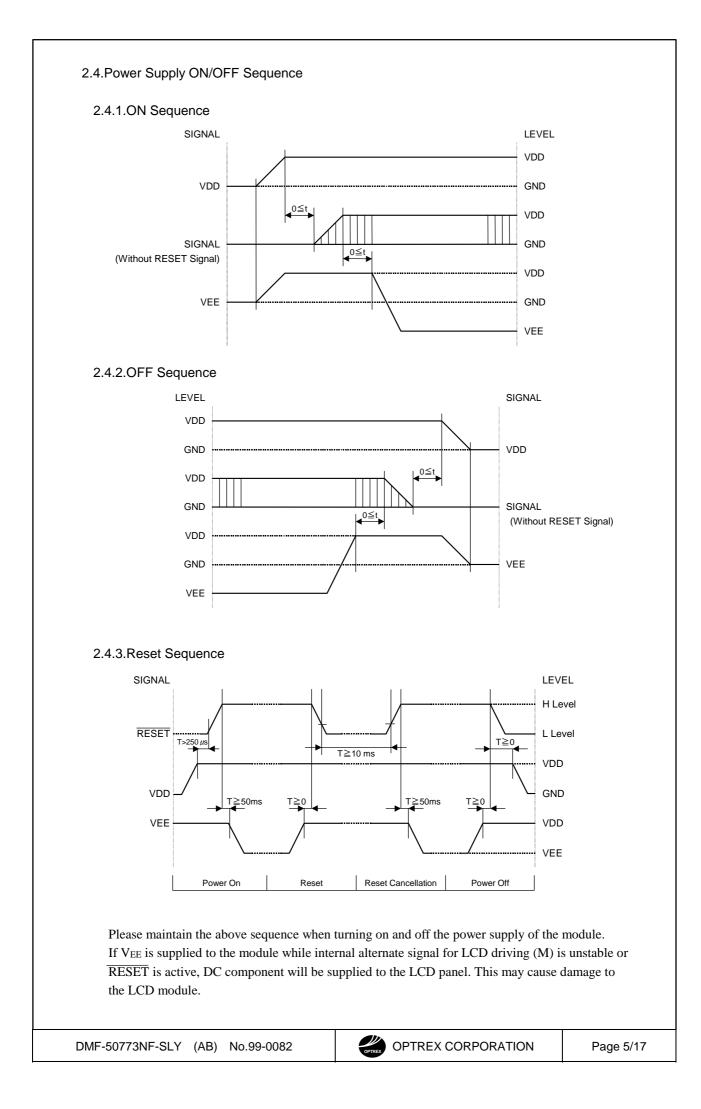
2. Electrical Specifications

2.1.Absolute Maximum Ratings

		C C		(GND=0V
Parameter	Symbol	Conditions	Min.	Max.	Units
Supply Voltage	V _{DD} -GND	_	-0.3	7.0	V
(Logic)					
Supply Voltage	V _{DD} -V _{EE}	_	0	30.0	V
(LCD Drive)					
Input Voltage	VI	_	-0.3	V _{DD} +0.3	V

2.2. Electrical Characteristics

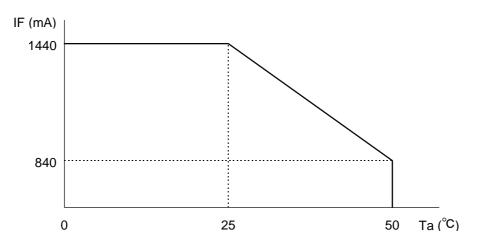

Ta=25°C, GND=0V


Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Supply Voltage	V _{DD} -GND	_	4.5	_	5.5	V
(Logic)						
Supply Voltage	VDD-VEE		Shown in 3.	1		V
(LCD Drive)						
High Level	VIH	$V_{DD} = 5.0V \pm 10\%$	V _{DD} -2.2	—	V _{DD}	V
Input Voltage						
Low Level	VIL	$V_{DD}{=}5.0V{\pm}10\%$	0	—	0.8	V
Input Voltage						
High Level	Vон	Іон=-0.75mА	V _{DD} -0.3	—	V _{DD}	V
Output Voltage						
Low Level	Vol	Iol=0.75mA	0	—	0.3	V
Output Voltage						
	Idd	V _{DD} -GND=5.0V	_	9.0	14.0	mA
Supply Current						
	IEE	V_{DD} - V_{EE} =18.5 V	_	2.9	4.5	mA

2.3. Timing Characteristics

2.3.1.AC Timing Characteristics

			V _{DD} =	$5.0V \pm 10\%$
Parameter	Symbol	Min.	Max.	Units
C/D Setup Time	t _{CDS}	100	_	ns
C/D Hold Time	t _{CDH}	10	_	ns
$\overline{\text{CE}}, \overline{\text{RD}}, \overline{\text{WR}}$ Pulse Width	t_{CE}, t_{RD}, t_{WR}	80	_	ns
Data Setup Time	t_{DS}	80	_	ns
Data Hold Time	t _{DH}	40		ns
Access Time	t _{ACC}	_	150	ns
Output Hold Time	t _{OH}	10	50	ns



2.5.LED Specifications

2.5.1.Absolute Maximum Ratings

	_					Ta=25℃
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Foward Current	I_{F}	Note 1	_	_	1440	mA
Reverse Voltage	VR	_	_	_	8.0	v
LED Power Dissipation	PD	_	_	_	5.9	W

Note 1 : Refer to the foward current derating curve.

2.5.2. Operating Characteristics

Ta=25°C

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Foward Voltage	V_{F}	$I_F = 720 m A$	3.8	4.1	4.4	v
Luminance of	L	$I_F = 720 m A$	40	_	_	cd/m ²
Backlight Surface						

3. Optical Specifications

3.1.LCD Driving Voltage

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Recommended		Ta= 0°C	_	_	20.9	V
LCD Driving Voltage	V_{DD} - V_{EE}	Ta=25°C	17.1	18.4	19.7	v
Note 1		Ta=50°C	16.0			V

Note 1 : Voltage (Applied actual waveform to LCD Module) for the best contrast. The range of minimum and maximum shows tolerance of the operating voltage. The specified contrast ratio and response time are not guaranteed over the entire range.

3.2.Optical Characteristics

Ta=25°C, 1/128 Duty, 1/12 Bias, V_D=18.4V (Note 4), $\theta = 0^{\circ}$, $\phi = -^{\circ}$

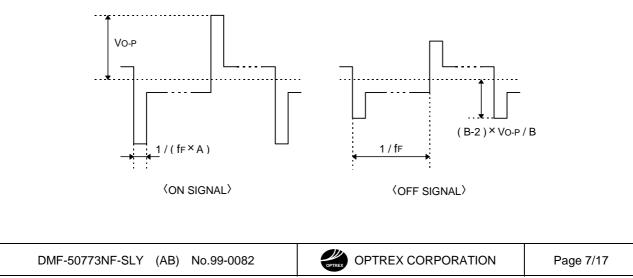
Pa	rameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Contrast Rat	tio Note 1	CR	$\theta = 0^{\circ}, \phi = -^{\circ}$	_	6	—	
Viewing An	gle			Shown i	n 3.3		
Response	Rise Note 2	Ton	—	_	200	300	ms
Time	Decay Note 3	Toff	—	_	300	600	ms

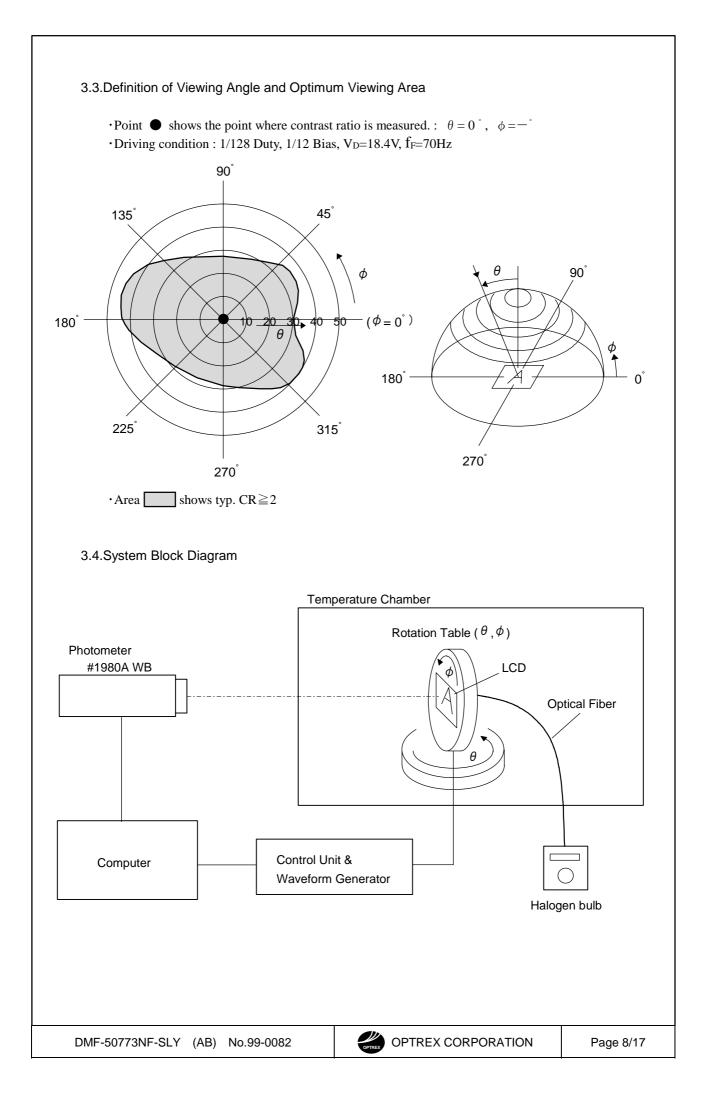
Note 1 : Contrast ratio is definded as follows.

 $CR = L_{OFF} / L_{ON}$

LON: Luminance of the ON segments

LOFF : Luminance of the OFF segments

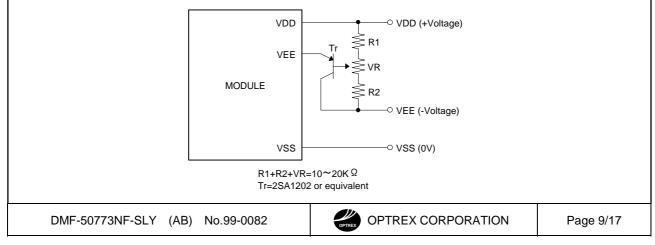

- Note 2 : The time that the luminance level reaches 90% of the saturation level from 0% when ON signal is applied.
- Note 3 : The time that the luminance level reaches 10% of the saturation level from 100% when OFF signal is applied.

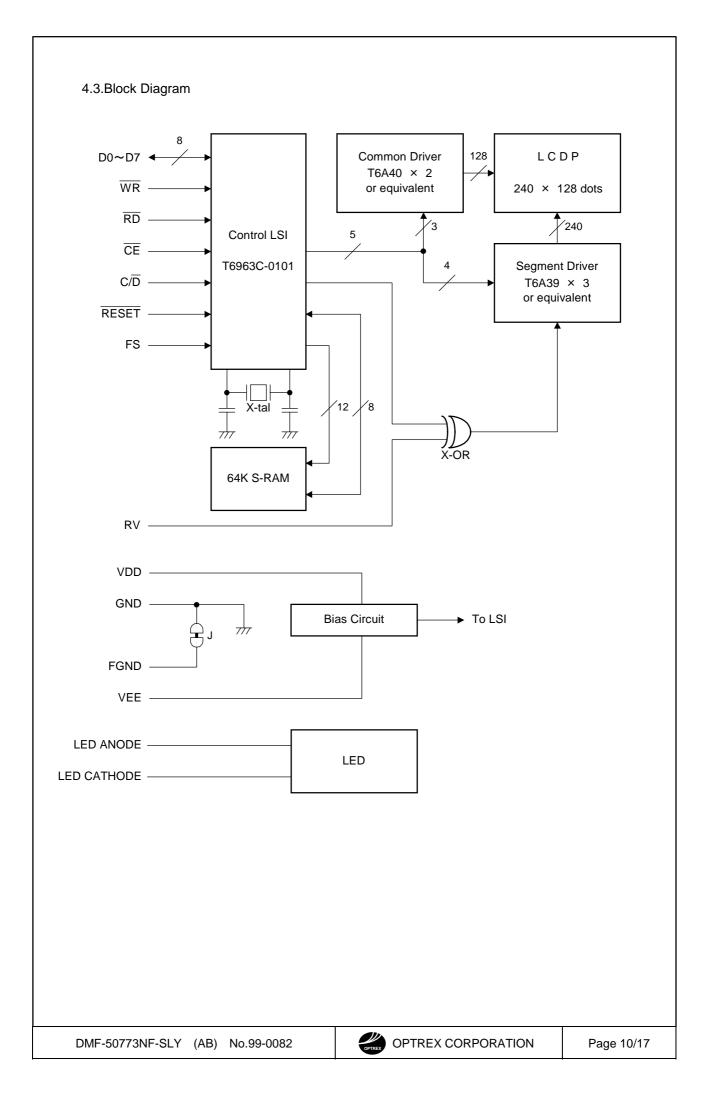

Note 4 : Definition of Driving Voltage V_D

1/A Duty - 1/B Bias (A : Duty Number, B : Bias Number). Driving voltage V_D is definded as follows.

 $V_D = (Vth1 + Vth2) / 2$

- Vth1 : The voltage V_{O-P} that should provide 50% of the saturation level in the luminance at the segment which the ON signal is applied to.
- Vth2 : The voltage V_{O-P} that should provide 50% of the saturation level in the luminance at the segment which the OFF signal is applied to.


4.I/O Terminal


4.1.Pin Assignment

No.	Symbol	Level	Function
1	FGND		Frame Ground
2	GND	_	Power Supply (0V, GND)
3	V _{DD}	_	Power Supply for Logic
4	V _{EE}	_	Power Supply for LCD Drive
5	WR	H/L	Write Signal L : Active
6	RD	H/L	Read Signal L : Active
7	CE	H/L	Chip Enable Signal L : Active
8	C/D	H/L	Write Mode H: Command Write L: Data Write
			Read Mode H : Status Read L : Data Read
9	NC		Non-connection
10	RESET	H/L	Reset Signal L : Reset
11	D0	H/L	Display Data
12	D1	H/L	Display Data
13	D2	H/L	Display Data
14	D3	H/L	Display Data
15	D4	H/L	Display Data
16	D5	H/L	Display Data
17	D6	H/L	Display Data
18	D7	H/L	Display Data
19	FS	H/L	Font Switch H: 6×8 dots L: 8×8 dots
20	RV	H/L	Display Data Reverse Signal H : Negative L : Positive
21	LED ANODE	_	LED Anode Terminal
22	LED CATHODE	_	LED Cathode Terminal

4.2.Example of Power Supply

It is recommended to apply a potentiometer for the contrast adjust due to the tolerance of the driving voltage and its temperature dependence.

5.<u>Test</u>

No change on display and in operation under the following test condition.

No.	Parameter	Conditions	Notes
1	High Temperature Operating	$50^{\circ}C \pm 2^{\circ}C$, 96hrs (operation state)	
2	Low Temperature Operating	$0^{\circ}C \pm 2^{\circ}C$, 96hrs (operation state)	3
3	High Temperature Storage	60°C±2°C, 96hrs	4
4	Low Temperature Storage	$-20^{\circ}C \pm 2^{\circ}C$, 96hrs	3, 4
5	Damp Proof Test	40°C±2°C, 90~95%RH, 96hrs	3, 4
6	Vibration Test	Total fixed amplitude : 1.5mm	5
		Vibration Frequency : $10 \sim 55$ Hz	
		One cycle 60 seconds to 3 directions of X, Y, Z for	
		each 15 minutes	
7	Shock Test	To be measured after dropping from 60cm high on	
		the concrete surface in packing state.	
		F F B A G C B A G C B C B C F C B C Concrete Surface E,F,G face : once	

Note 1 : Unless otherwise specified, tests will be conducted under the following condition. Temperature $\,:20\pm5^\circ\!C$

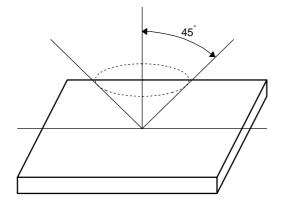
Humidity $:65\pm5\%$

Note 2 : Unless otherwise specified, tests will be not conducted under functioning state.

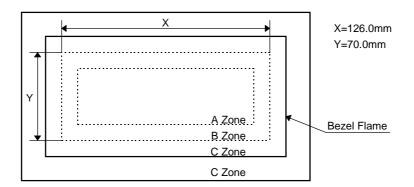
Note 3 : No dew condensation to be observed.

Note 4 : The function test shall be conducted after 4 hours storage at the normal temperature and humidity after removed from the test chamber.

Note 5 : Vibration test will be conducted to the product itself without putting it in a container.


6. Appearance Standards

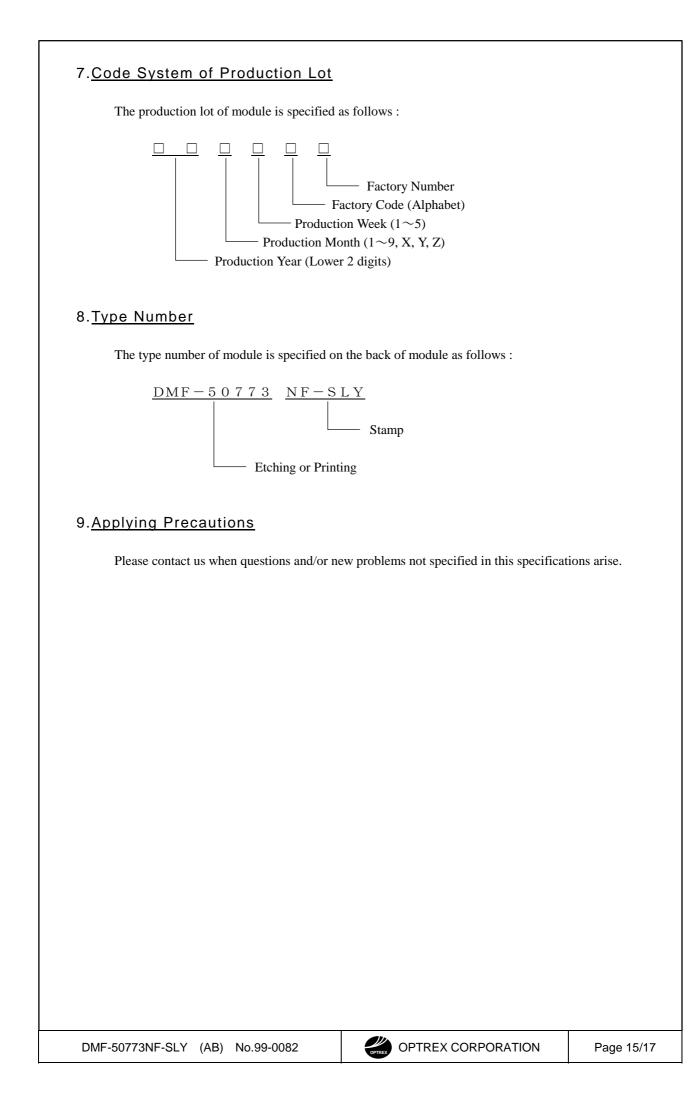
6.1.Inspection conditions


The LCD shall be inspected under 40W white fluorescent light.

The distance between the eyes and the sample shall be more than 30cm.

All directions for inspecting the sample should be within 45 $^{\circ}\,$ against perpendicular line.

6.2. Definition of applicable Zones


A Zone : Active display area

B Zone : Area from outside of "A Zone" to validity viewing area C Zone : Rest parts

A Zone + B Zone = Validity viewing area

1Black and White Spots, Foreign Substances(1) Round Shape1White Spots, Foreign Substances	White Spots,	Zone	Ac		
Foreign SubstancesDimension (mm)AB $D \leq 0.1$ ** $0.1 < D \leq 0.2$ 35 $0.2 < D \leq 0.25$ 23 $0.25 < D \leq 0.3$ 01 $0.3 < D$ 00 $D = (Long + Short) / 2$ *: Disregard(2) Line Shape(2) Line Shape $X (mm)$ Y (mm)A B * $0.03 \geq W$ * $0.03 \geq W$ ** $0.03 \geq W$ ** $0.03 \geq W$ 3 $1.0 \geq L$ $0.1 \geq W$ 3 3 $ 0.1 < W$ X : LengthY: Width*: DisregardTotal defects shall not exceed 5.22Air Bubbles (between glass & polarizer)ZoneAcceptable Nu Dimension (mm)AB	_		Ac		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Foreign Substances	Dimension (mm)		ceptable Numb	ber
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		Dimension (mm)	А	В	С
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		D ≦0.1	*	*	*
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		$0.1 < D \leq 0.2$	3	5	*
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		$0.2 < D \leq 0.25$	2	3	*
D = (Long + Short) / 2 *: Disregard $(2) Line Shape$ $(3) Line Shape$ $(2) Line Shape$ $(3) Line Shape$ $(2) Line Shape$ $(3) Line Shape$ $(4) Line Shape$		$0.25 \le D \le 0.3$	0	1	*
$(2) \text{ Line Shape}$ $(2) \text{ Line Shape}$ $X (mm) Y (mm) A B$ $* 0.03 \ge W * *$ $2.0 \ge L 0.05 \ge W 3 3$ $1.0 \ge L 0.1 \ge W 3 3$ $1.0 \ge L 0.1 \ge W 3 3$ $1.0 \ge L 0.1 \le W 3 3$ $X : \text{ Length } Y : \text{ Width } * : \text{ Disregard}$ $X : \text{ Length } Y : \text{ Width } * : \text{ Disregard}$ $X : \text{ Length } Y : \text{ Width } * : \text{ Disregard}$ $Total \text{ defects shall not exceed 5.}$ 2 Air Bubbles $(\text{between glass}$ $\& \text{ polarizer)} \overline{\text{ Dimension (mm) } A B}$		0.3 < D	0	0	*
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		-	* : Disregard		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		Zone	Ac	ceptable Numb	ber
$2.0 \ge L \qquad 0.05 \ge W \qquad 3 \qquad 3 \qquad 3 \\ 1.0 \ge L \qquad 0.1 \ge W \qquad 3 \qquad 3 \\ - \qquad 0.1 < W \qquad \text{In the same wa} \\ X : \text{Length } Y : \text{Width} \qquad * : \text{Disregard} \\ \text{Total defects shall not exceed 5.} \\ 2 \qquad \text{Air Bubbles} \\ (\text{between glass} \\ \& \text{ polarizer}) \qquad \boxed{\begin{array}{c c} & & & \\ & $		X (mm) Y (mm)	А	В	С
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		* 0.03≧W	*	*	*
- 0.1 < W			3		*
X : Length Y : Width * : Disregard Total defects shall not exceed 5. Air Bubbles (between glass & polarizer) Zone Acceptable Nu Dimension (mm) A		$1.0 \ge L$ $0.1 \ge W$	3	3	*
2 Air Bubbles (between glass & polarizer) Zone Acceptable Nu Dimension (mm) A		- 0.1 < W	In	the same way ((1)
	(between glass	Zone	Ac	_	
$D \leq 0.3 \qquad * \qquad *$	& polarizer)				C
					*
$0.3 < D \leq 0.4$ 3 *					*
$0.4 < D \leq 0.6 \qquad 2 \qquad 3$					*
$\begin{array}{ c c c c c } \hline 0.6 < D & 0 & 0 \\ \hline \hline \end{array}$			0	0	*
* : Disregard Total defects shall not exceed 3.		-	3		

No.	Parameter	Criteria
3	The Shape of Dot	(1) Dot Shape (with Dent) 0.15≧ As per the sketch of left hand.
		(2) Dot Shape (with Projection)
		Should not be connected to next dot.
		(3) Pin Hole \xrightarrow{X}
		$(X+Y)/2 \leq 0.2 \text{mm}$ (Less than 0.1 mm is no counted.)
		(4) Deformation
		$(X+Y)/2 \leq 0.2 \text{mm}$
		Total acceptable number : 1/dot, 5/cell (Defect number of (4) : 1pc.)
4	Polarizer Scratches	Refer to the sample.
5	Polarizer Dirts	If the stains are removed easily from LCDP surface, the module is not defective.
6	Complex Foreign Substance Defects	Black spots, line shaped foreign substances or air bubbles between glass & polarizer should be 5pcs maximum in total.
7	Distance between Different Foreign Substance Defects	$D \le 0.2 : 20 \text{mm or more}$ 0.2 < D : 40 mm or more

10. Precautions Relating Product Handling

The Following precautions will guide you in handling our product correctly.

- 1) Liquid crystal display devices
 - ① The liquid crystal display device panel used in the liquid crystal display module is made of plate glass. Avoid any strong mechanical shock. Should the glass break handle it with care.
 - ② The polarizer adhering to the surface of the LCD is made of a soft material. Guard against scratching it.

2) Care of the liquid crystal display module against static electricity discharge.

- ① When working with the module, be sure to ground your body and any electrical equipment you may be using. We strongly recommend the use of anti static mats (made of rubber), to protect work tables against the hazards of electrical shock.
- ② Avoid the use of work clothing made of synthetic fibers. We recommend cotton clothing or other conductivity-treated fibers.
- ③ Slowly and carefully remove the protective film from the LCD module, since this operation can generate static electricity.
- 3) When the LCD module alone must be stored for long periods of time:
 - ① Protect the modules from high temperature and humidity.
 - ② Keep the modules out of direct sunlight or direct exposure to ultraviolet rays.
 - ③ Protect the modules from excessive external forces.
- 4) Use the module with a power supply that is equipped with an overcurrent protector circuit, since the module is not provided with this protective feature.
- 5) Do not ingest the LCD fluid itself should it leak out of a damaged LCD module. Should hands or clothing come in contact with LCD fluid, wash immediately with soap.
- 6) Conductivity is not guaranteed for models that use metal holders where solder connections between the metal holder and the PCB are not used. Please contact us to discuss appropriate ways to assure conductivity.
- 7) For models which use CFL:
 - ① High voltage of 1000V or greater is applied to the CFL cable connector area. Care should be taken not to touch connection areas to avoid burns.
 - ② Protect CFL cables from rubbing against the unit and thus causing the wire jacket to become worn.
 - ③The use of CFLs for extended periods of time at low temperatures will significantly shorten their service life.

8) For models which use touch panels:

①Do not stack up modules since they can be damaged by components on neighboring modules. ②Do not place heavy objects on top of the product. This could cause glass breakage.

- 9) For models which use COG,TAB,or COF:
 - ①The mechanical strength of the product is low since the IC chip faces out unprotected from the rear. Be sure to protect the rear of the IC chip from external forces.
 - ②Given the fact that the rear of the IC chip is left exposed, in order to protect the unit from electrical damage, avoid installation configurations in which the rear of the IC chip runs the risk of making any electrical contact.
- 10) Models which use flexible cable, heat seal, or TAB:
- ①In order to maintain reliability, do not touch or hold by the connector area.
 ②Avoid any bending, pulling, or other excessive force, which can result in broken connections.

11.Warranty

This product has been manufactured to your company's specifications as a part for use in your company's general electronic products. It is guaranteed to perform according to delivery specifications. For any other use apart from general electronic equipment, we cannot take responsibility if the product is used in medical devices, nuclear power control equipment, aerospace equipment, fire and security systems, or any other applications in which there is a direct risk to human life and where extremely high levels of reliability are required. If the product is to be used in any of the above applications, we will need to enter into a separate product liability agreement.

- ① We cannot accept responsibility for any defect, which may arise from additional manufacturing of the product (including disassembly and reassembly), after product delivery.
- ② We cannot accept responsibility for any defect, which may arise after the application of strong external force to the product.
- ③ We cannot accept responsibility for any defect, which may arise due to the application of static electricity after the product has passed your company's acceptance inspection procedures.
- ④ When the product is in CFL models, CFL service life and brightness will vary according to the performance of the inverter used, leaks, etc. We cannot accept responsibility for product performance, reliability, or defect, which may arise.
- (5) We cannot accept responsibility for industrial property, which may arise through the use of your product, with exception to those issues relating directly to the structure or method of manufacturing of our product.
- ⑥ Optrex will not be held responsible for any quality guarantee issue for defect products judged as Optrex-origin longer than 2 (two) years from Optrex production or 1(one) year from Optrex, Optrex America, Optrex Europe, Display LC delivery which ever comes later.